Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 368: 114483, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37479019

RESUMO

Physical exercise represents a potentially inexpensive, accessible, and optimizable rehabilitation approach to traumatic brain injury (TBI) recovery. However, little is known about the impact of post-injury exercise on the neurometabolic, transcriptional, and cognitive outcomes following a TBI. In the current study, we examined TBI outcomes in adolescent male and female mice following a controlled cortical impact (CCI) injury. Mice underwent a 10-day regimen of sedentary, low-, moderate-, or high-intensity treadmill exercise and were assessed for cognitive function, histopathology, mitochondrial function, and oxidative stress. Among male mice, low-moderate exercise improved cognitive recovery, and reduced cortical lesion volume and oxidative stress, whereas high-intensity exercise impaired both cognitive recovery and mitochondrial function. On the other hand, among female mice, exercise had an intermediate effect on cognitive recovery but significantly improved brain mitochondrial function. Moreover, single nuclei RNA sequencing of perilesional brain tissue revealed neuronal plasticity-related differential gene expression that was largely limited to the low-intensity exercise injured males. Taken together, these data build on previous reports of the neuroprotective capacity of exercise in a TBI model, and reveal that this rehabilitation strategy impacts neurometabolic, functional, and transcriptional outcome measures in an intensity- and sex-dependent manner.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Camundongos , Masculino , Feminino , Animais , Lesões Encefálicas Traumáticas/patologia , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Estresse Oxidativo , Neuroproteção
2.
J Alzheimers Dis ; 70(1): 139-151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31177221

RESUMO

Mitochondrial dysfunction is often found in Alzheimer's disease (AD) patients and animal models. Clinical severity of AD is linked to early deficiencies in cognitive function and brain metabolism, indicating that pathological changes may begin early in life. Previous studies showed decreased mitochondrial function in primary hippocampal neurons from triple-transgenic Alzheimer's disease (3xTg-AD) mice and mitochondrial movement and structure deficits in primary neurons exposed to amyloid-ß oligomers. The present study characterized mitochondrial movement, number, and structure in 3xTg-AD primary cortical neurons and non-transgenic (nonTg) controls. We found a significant reduction in mitochondrial number and movement in 3xTg-AD primary cortical neurons with modest structural changes. Additionally, application of the sigma-1 receptor agonist, (+)SKF-10,047, markedly increased mitochondrial movement in both 3xTg-AD and nonTg primary cortical cultures after one hour of treatment. (+)SKF-10,047 also led to a trend of increased mitochondrial number in 3xTg-AD cultures. Embryonic mitochondrial movement and number deficits could be among the key steps in the early pathogenesis of AD that compromise cognitive or metabolic reserve, and amelioration of these deficits could be a promising area for further preclinical and clinical study.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Mitocôndrias/patologia , Dinâmica Mitocondrial/fisiologia , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...